3 research outputs found

    Stratégie de protection à sélectivité totale pour réseaux MTDC

    No full text
    International audienceLa mise en place de réseaux à courant continu de grande taille en Europe est un objectif plausible dans un futur proche compte tenu de l'évolution du mix énergétique. En effet, de grands sites décentralisés de production d'énergies renouvelables vont progressivement apparaître (ex : fermes éoliennes offshores, centrales de production photovoltaïque, etc.). Avec les convertisseurs de type VSC, il est techniquement possible d'assembler plusieurs liaisons HVDC en une structure en réseau. Ainsi, un tel réseau permettra le transit d'une grande quantité de puissance, de l'ordre de plusieurs gigawatts, en courant continu, entre les différentes stations de conversion qui le composent. La protection d'un tel ouvrage est par conséquent un point critique et indispensable. En effet, en cas de défaut dans la partie à courant continu et au vue des puissances qui transitent, il est primordial de réduire au maximum les conséquences liées à l'apparition de ce défaut. Si plusieurs gigawatts sont échangés dans le réseau à courant continu, il est risqué pour la stabilité du (ou des) réseau(x) AC extérieur(s) de stopper l'ensemble de ce transit. C'est pour cela que des stratégies de protection rapides, efficaces et sélectives doivent être mises en œuvre. Cet article propose une revue des principales contraintes liées à la protection des réseaux à courant continu qui sont intrinsèques au courant continu, des différentes stratégies de protection qui peuvent être appliquées à un tel réseau et des principaux types de disjoncteurs à courant continu. Les différentes durées de fonctionnement de la détection et des disjoncteurs sont à comparer avec le temps critique d'élimination des défauts du réseau MTDC. Mots-clés—Disjoncteur à courant continu HVDC, Plan de protection, Réseau MTDC, Station de conversion, Sélectivité, Temps critique d'élimination des défauts.</p

    Stratégie de protection à sélectivité totale pour réseaux multi-terminaux à courant continu composés de câbles et de convertisseurs de type hb-mmc

    No full text
    In a near future, multi-terminal High Voltage Direct Current grids (MT-HVDC grids) appear to be a suitable solution for the integration of power electricity produced by remote offshore windfarms into the AC transmission system. Though the recourse to HVDC point-to-point links is well-known, challenges still remain for a safe operation of HVDC grids. Protection is the main technical field still under study and reliable protection strategies ensuring the best technological and economic ratio are investigated. This thesis focused on a full selective protection philosophy similar to the one applied to AC transmission systems. The consideration of cable links, Half-Bridge VSC-MMC converters and hybrid DC circuit breakers defines the frame of the study. An association of two algorithms for the identification of faults is suggested. The time available for the fault clearing process has been investigated. Simulations performed with EMTP software have been used to evaluate the reliability of the suggested strategy.Les réseaux multi-terminaux à courant continu sont une solution efficace pour intégrer l’énergie électrique produite en grande quantité par de grands parcs éoliens offshore. Bien que le recours à la technologie HVDC soit maitrisé pour des applications point-à-point, des verrous technologiques sont encore à lever pour permettre une exploitation sûre d’un réseau à courant continu. La protection est le principal domaine technique pour lequel des progrès sont encore attendu. Des stratégies de protection fiables et assurant le meilleur ratio technico-économique sont à l’étude. Ces travaux de thèse ont pour objectif la mise en œuvre d’une philosophie de protection à sélectivité totale, identique à celle utilisée dans les réseaux de transport traditionnels. Cette étude considère l’utilisation de liaison par câbles uniquement, de convertisseurs VSC-MMC composées de sous-modules en demi-pont et de disjoncteurs hybrides à courant continu. Une association de deux algorithmes de détection de défaut a été proposée. Une étude du temps disponible pour l’élimination du défaut a été menée. Enfin, des simulations numériques avec le logiciel EMTP ont permis d’évaluer la fiabilité de la stratégie de protection

    Toward the Deployment of Low-Voltage DC Distribution Grids: Review on the Influence of Voltage Levels, Protection Schemes and Power Quality Aspects

    No full text
    During the last years, distribution power systems working with Direct Current (DC) are gaining visibility and becoming more competitive. The growth in the number of theoretical and experimental studies using low-voltage DC grids can be justified as the result of three facts: the improvements in power electronics, the increase in the use of DC-based loads and a growing presence of DC energy generation among Renewable Energy Sources. However, there are still some major challenges limiting the deployment of DC in low-voltage distribution grids. Some of the subjects that need further studies and are also crucial for the standardization of DC in low-voltage environments, it is possible to highlight the choice of the distribution voltage levels, the design of selective protection schemes and the evaluation of power quality aspects. The objective of this paper is to analyze these main obstacles through a literature review with a focus on the worldwide tendencies and possible solutions
    corecore